Peer-Instruction: An interactive learning strategy to promote students’ conceptual reasoning

Sahana Murthy
IDP in Educational Technology
Indian Institute of Technology Bombay

Symposium on teaching-learning in higher education
IIT Madras
May 28, 2014
Teaching

• Ph.D. Program, began 2010

• 20 Ph.D. research scholars

• Faculty members
 – Core
 – Associated (from IITB Depts – EE, CSE, ChE, HSS, IDC …)
 – Visiting (from India and abroad)

• PhD Students
 – Coursework
 – Research projects
 – Outreach activities
Ph.D. theses – IIT Bombay ET

Learning pan-domain cognitive skills
• Framework for scaffolding programming to Hindi-medium learners
• Development and assessment of engineering design competencies
• Computer-based training for improvement of spatial skills
• Development the scientific ability of modeling using learning objects
• Development of students’ problem posing skills

Teacher use of ET
• Teacher integration of technology in classroom
• Framework for customized visualization selection and integration

Effective design of educational technology
• Interactive Visualizations in engineering education
• Development of guidelines to design and evaluate Virtual Labs
• Collaborative approach for programming using Spoken Tutorials

Automated content generation & assessment
• Automated generation and evaluation of assessment instrument
• Automation in constructing customized textbooks from lecture transcripts
Outreach

• T10KT workshop (Feb. 2013):
 Research Methods in Educational Technology
 – 4000 engineering college instructors participated
 – 50 participants mentored to conduct action research
 – 12 participants presented paper in T4E 2013 conference

• 20+ Workshops on:
 – Integrating educational technology in engg. education
 – Effective teaching-learning strategies for engg. education

• Materials uploaded under Creative Commons at
 – http://www.et.iitb.ac.in/resources
 – http://www.it.iitb.ac.in/nmeict/eVideos/RMET_Teachers/content/content.html
What is active learning?

Approach to teaching and learning whose goal is to engage students with the content via specific activities that get students to talk, write, reflect and express their thinking.

– There are several instructional strategies that can come under active learning.
– Many informal strategies may have the same goal, but to be termed as active learning, they need to meet the following requirements.

Requirements of active learning strategies:

• Instructor creates carefully designed activities that require students to talk, write, reflect and express their thinking.

• Students go beyond listening, copying of notes, execution of prescribed procedures.

• Explicitly based on theories of learning.

• Evaluated repeatedly through empirical research.

But my lectures are plenty interactive!

- I often pause to ask students if they understood the material
- Students can even interrupt with doubts
- I never hesitate to answer their questions
- I show them demos and videos

Aren’t these enough?
Lecture quality does not seem to matter

If it is not quality of lectures, what does lead to better learning?

EXPERIMENT

Two videos of same instructor

<table>
<thead>
<tr>
<th>Group 1 – ‘Fluent’ video</th>
<th>Group 2 – ‘Disfluent video'</th>
</tr>
</thead>
<tbody>
<tr>
<td>speaks fluently, no notes, upright, maintains eye-contact</td>
<td>speaks haltingly, often sees notes, slouches, poor body language</td>
</tr>
</tbody>
</table>

MEASUREMENT

Student performance by post-test on topic

RESULTS

Perceived learning greater than actual learning for Group 1

Perceived equal to actual learning for Group 2

Same actual learning for both groups
Comparing good lectures with interactive engagement strategies

- 6542 students
- 62 courses – Physics (many instructors with high evals)
- Variety of institutions: high school, college, university
- Standardized test used – Force Concept Inventory

Normalized gain
\[<g> = \frac{(\text{post-pre})}{(100-\text{pre})} \]

Desirable to incorporate interactive engagement strategies
How can we achieve active learning?

• Peer-Instruction

• Think-Pair-Share

 This is the talk right after lunch – Prof Sridhar Iyer, IIT Bombay

• Team-Pair-Solo

• Many others:
 – Problem-based learning, Productive failure, Role-play, Jigsaw,
What exactly is Peer-Instruction?
How is it different from other types of questioning?

How is Peer-Instruction related to clickers?
You toss an old 1-rupee coin and a new 1-rupee coin. Which is the most likely outcome:

1) Two heads
2) Two tails
3) One head and one tail
4) Each of 1, 2, 3 above is equally likely
You toss an old 1-rupee coin and a new 1-rupee coin. Which is most likely:

1) Two heads
2) Two tails
3) One head and one tail
4) Each of 1, 2, 3 above is equally likely
How many of you changed your answer?
What did students (you in the previous slide) do?

- Talk, argue, listen (sometimes), reason, draw => Actively engaged
- Learn from each other, teach each other (teach<=>learn)
- Those who don’t know willing to think, reason, answer
- Those who do know also participate
- Pre-existing thinking is elicited, confronted, resolved

What are other benefits? To instructor? To class atmosphere

- Immediate feedback to instructor
- Students realize that even others are struggling
- Builds a friendly, yet scientific atmosphere
- Improve communication
Anatomy of Peer-Instruction method

- Ask Question
- Peer Discussion
- Vote
- Lecture
- Debrief / Class Discussion

(May vote individually)

Figure attributed to: Stephanie Chasteen and the Science Education Initiative at the University of Colorado

Peer-Instruction with clickers
But clickers are not Peer-Instruction
OR: A4 sheet of paper
Fold it in four
Marker – A, B, C, D
Peer-Instruction without clickers - 2
Research on Peer-Instruction
PI one of the most widely researched* strategies

(* This is good because ...)

• Extent of research
 – 300+ research articles
 – Physics, biology, chemistry maths, CS, engineering, psychology, medicine & nursing ...
 – Many controlled studies using standardized tests

• Courses using peer instruction outperform traditional lecture courses on a common test

• Students can better answer a question on their own, after peer instruction discussion, (especially difficult questions) – study with 16 pairs of isomorphic questions *Smith et al, Science 2009*

• Research on student perception says: clickers help students show up for class, feel part of class community, make their voice heard, hold them accountable ...

From ‘iClickerJan292014’ ppt, Stephanie Chasteen / Science Education Initiative/ CU-Boulder.
Writing effective Peer-Instruction questions
What makes a good peer-instruction question?

An effective peer-instruction question:

• Is usually conceptual (avoid long analytic computation)
• Elicits pre-existing thinking, students’ alternate conceptions
• Asks students to predict results of experiment, or algorithm
• Makes students apply ideas in new context
• Relates different representations
• Has believable distractors

• is not ambiguous
• is not leading
• is not ‘trivial’
Types of Peer-Instruction questions
Survey questions

I would like to know a little about your background. Which domain do you identify with the most?

1. Physics
2. Chemistry
3. Computer Science
4. Electrical Engg
5. Mechanical Engg
6. Other engg domain
7. None of the above
Survey questions

Since this is the first class of PH103 – Electricity & Magnetism, I would like to know your background. Are you familiar with vector calculus?

1. I only know basic differentiation and integration
2. I have heard the terms gradient, divergence, curl, but I do not know how to calculate them
3. I can calculate gradient, divergence, curl of functions but I do not know how to draw the functions
4. I can calculate vector derivatives as well as comfortably draw the functions

I used this in the first class in PH103 E&M
Different questions for different goals, pedagogical strategies

1. Survey questions
2. Conceptual reasoning
3. Predict an outcome (e.g., of experiment, program)
4. Reason using representations
5. As a stepping stone to problem-solving
6. Recall point from previous lecture
7. Personal opinion
A parallel plate capacitor is charged to a total charge Q and the battery removed. A dielectric slab is inserted between the plates. What happens to the energy stored in the capacitor?

A) Increases
B) Decreases
C) Stays the same
Predict the outcome
(of an experiment, video, program)

A helium balloon is attached to a string tied to the bottom of a cart on wheels. The sides of the cart are encased in clear plastic. A person will abruptly push the cart to the left. Will the balloon move?

A) Yes, to the left
B) Yes, to the right
C) No

Let students vote, then show movie for what happens.

Get students to predict, show video URL, discuss reasoning in wrap-up
Predict results of experiment

A light bulb lights up when it’s connected to a power source through a weak acid.

What will happen if we use a 100% acid solution?

A) Brighter
B) Dimmer
C) Same brightness
Reasoning with representations

Which circuit will satisfy given input output relationship?

Diagrammatic representations in question AND choices
As a stepping stone to problem-solving

A very large capacitor has charge Q. A neutral dielectric is inserted into the gap. **Your goal is to find \mathbf{D} everywhere.** You can use the following relations:

i) $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$

ii) $\oint \mathbf{D} \cdot d\mathbf{a} = Q_{\text{free}}$

iii) $\oint \mathbf{E} \cdot d\mathbf{a} = Q / \varepsilon_0$

Which equation would you use first?

A) The one with P

B) The one with Q_{free}

C) The one with Q / ε_0

D) I can use any of them first

Such questions are useful to start the problem solving process, before students begin to flex their mathematical muscles.
Recall point from previous lecture

Positive ions flow right through a liquid, negative ions flow left. Is there a net current through the liquid? (Same density and speed of both ions)

A) Yes, to the right
B) Yes, to the left
C) No
D) Not enough information given

I used this in the class after the definition of current was introduced

Question based on Concept Test from University of Colorado Upper Division Electrostatics course
Personal opinion

The pace of this class is:
A) Too fast
B) Too slow
C) Just about right

Useful as a mid-semester feedback every 4 weeks or so

The quiz was:
A) Easy
B) Somewhat challenging, but I could do it
C) Too challenging

Used right after Quiz 1
Summary – Question types

1. Survey questions
2. Conceptual reasoning
3. Predict an outcome (e.g., of experiment, program)
4. Reason using representations
5. As a stepping stone to problem-solving
6. Recall point from previous lecture
7. Personal opinion
When to use Peer-instruction questions
Questions within the learning cycle

BEFORE
Setting up instruction (beginning of module)

Questions to:
Motivate
Discover
Provoke thinking
Assess prior knowledge

DURING
Developing knowledge (middle of module)

Questions to:
Check knowledge
Application
Analysis
Evaluation
Synthesis
Elicit misconception

AFTER
Assessing learning (end of module)

Questions to:
Relate to big picture
Demonstrate success
Review or recap
Exit poll

Adapted from From “iClicker” by Stephanie Chasteen and the Science Education Initiative at the University of Colorado
Peer Instruction Resources

Carl Wieman Science Education Initiative - Clicker Resources

Used over 20 years in physics – several repositories, books
“Peer Instruction: A User’s Manual” by Eric Mazur

Becoming popular in intro CS courses
www.peerinstruction4cs.org

Lots on Google …
Challenges and Best Practices
Challenges you might face

<table>
<thead>
<tr>
<th>REPORTED CHALLENGES</th>
<th>RECOMMENDED STRATEGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>The class is too quiet.</td>
<td>Be patient – students’ reluctance to discuss improves after 3-4 iterations Do solo vote, allow enough time</td>
</tr>
<tr>
<td>The class is too noisy.</td>
<td>That’s ok, this is good noise. Most students are seen to be on task.</td>
</tr>
<tr>
<td>Some students just may not participate.</td>
<td>Explain why you are doing this, use challenging & interesting questions, ... let them be</td>
</tr>
<tr>
<td>Students may not know how to reason.</td>
<td>This is not quite true provided questions are designed well</td>
</tr>
<tr>
<td>The class will get chaotic. How do I get students back?</td>
<td>Use a cue such as a bell</td>
</tr>
</tbody>
</table>
Best Practices

On Writing Questions

• Recommended – questions requiring conceptual reasoning (verbal, logical, diagrammatic)

• Avoid – questions involving number crunching (but can use PI to precede a numerical problem, for ex ...)

• Recommend – Mix it up.
 – WHY: different pedagogical goals: bringing out a misconception, predicting an outcome, recall point from last class
 – WHAT: different types of questions: survey, representations, reasoning, Y/N
 – WHEN: at a variety of points during class (beginning / middle / end)

• Avoid - questions that can be answered by memorization (unless that’s your goal, then use sparingly).
Best Practices

On Facilitating Peer-Instruction

• DON’T SKIP ON PEER DISCUSSION (if single vote, only after group talk)

• FOCUS ON REASONING NOT ON RIGHT ANSWER.
 – Withhold judgment. Do not give ‘rapid rewards’ (nodding in assent)
 – Discuss reasons for right and wrong answers
 – Ask multiple students to give answers.

• TIME. Recommended 2-5 minutes per question.

• FREQUENCY. Recommended – a “few” per class, 2-4. (Some instructors for ex Eric Mazur entirely use PI, no lectures).

• CREDIT. Do not assign heavy credit for right / wrong answers. Some instructors (with clickers) assign a “whiff” of credit for participation.

• I like to circulate, listen to student reasoning, give individual attention
Important good practice – Applicable for all active learning strategies

GET STUDENT BUY-IN.

Create it by explaining why you are doing this.

Better still demonstrate why you are doing this.
Plenty of resources

• Peer-instruction How-tos, workshop slides, videos, research ...
 Carl Wieman Science Education Institute
 http://www.cwsei.ubc.ca/resources/clickers.htm
 and host of links from within

• Instructors in many disciplines have posted peer-instruction questions for their courses – physics, CS, Statistics – use Google (search with varied nomenclature – PI, clickers, PRS)

BUT ...

• We need to create a library of questions for our courses, report experiences in our context.
 Please participate!